Attention is an effective mechanism to improve the deep model capability. Squeeze-and-Excite (SE) introduces a light-weight attention branch to enhance the network's representational power. The attention branch is gated using the Sigmoid function and multiplied by the feature map's trunk branch. It is too sensitive to coordinate and balance the trunk and attention branches' contributions. To control the attention branch's influence, we propose a new attention method, called Shift-and-Balance (SB). Different from Squeeze-and-Excite, the attention branch is regulated by the learned control factor to control the balance, then added into the feature map's trunk branch. Experiments show that Shift-and-Balance attention significantly improves the accuracy compared to Squeeze-and-Excite when applied in more layers, increasing more size and capacity of a network. Moreover, Shift-and-Balance attention achieves better or close accuracy compared to the state-of-art Dynamic Convolution.
翻译:注意是提高深层模型能力的有效机制。 Squeze- and-Excite (SE) 引入了一个轻量级关注分支, 以强化网络的代表力量。 注意分支使用 Sigmoid 函数并乘以特性地图的中继分支, 其作用太敏感, 无法协调和平衡中继和关注分支的贡献 。 为了控制关注分支的影响, 我们建议了一种新的关注方法, 叫做 Shift- and- Balance (SB) 。 不同于 Squeze- and- Excite (SB), 关注分支由学习的控制因素来控制平衡, 然后添加到特征地图的中继分支 。 实验显示, 移动和平衡关注显著提高了在多层应用时的准确性, 增加了网络的大小和能力。 此外, 移动和平衡关注比状态动态变迁的准确性更好或更近。