Deep learning with physics-informed neural networks (PINNs) has emerged as a highly popular and effective approach for solving partial differential equations(PDEs). In this paper, we first investigate the extrapolation capability of the PINN method for time-dependent PDEs. Taking advantage of this extrapolation property, we can generalize the training result obtained in the time subinterval to the large interval by adding a correction term to the network parameters of the subinterval. The correction term is determined by further training with the sample points in the added subinterval. Secondly, by designing an extrapolation control function with special characteristics and combining it with the correction term, we construct a new neural network architecture whose network parameters are coupled with the time variable, which we call the extrapolation-driven network architecture. Based on this architecture, using a single neural network, we can obtain the overall PINN solution of the whole domain with the following two characteristics: (1) it completely inherits the local solution of the interval obtained from the previous training, (2) at the interval node, it strictly maintains the continuity and smoothness that the true solution has. The extrapolation-driven network architecture allows us to divide a large time domain into multiple subintervals and solve the time-dependent PDEs one by one in chronological order. This training scheme respects the causality principle and effectively overcomes the difficulties of the conventional PINN method in solving the evolution equation on a large time domain. Numerical experiments verify the performance of our proposed method.
翻译:暂无翻译