This paper studies the strategic interaction of algorithms in economic games. We analyze games where learning algorithms play against each other while searching for the best strategy. We first establish a fluid approximation technique that enables us to characterize the learning outcomes in continuous time. This tool allows to identify the equilibria of games played by Artificial Intelligence algorithms and perform comparative statics analysis. Thus, our results bridge a gap between traditional learning theory and applied models, allowing quantitative analysis of traditionally experimental systems. We describe the outcomes of a social dilemma, and we provide analytical guidance for the design of pricing algorithms in a Bertrand game. We uncover a new phenomenon, the coordination bias, which explains how algorithms may fail to learn dominant strategies.
翻译:本文研究经济游戏中算法的战略互动。 我们分析学习算法在哪些游戏中相互影响,同时寻找最佳策略。 我们首先建立一个流体近似技术, 使我们能够在连续的时间内描述学习结果。 这个工具可以识别人工智能算法所玩游戏的平衡性, 并进行比较静态分析。 因此, 我们的结果缩小了传统学习理论与应用模型之间的差距, 允许对传统实验系统进行定量分析。 我们描述了社会困境的结果, 我们为伯特兰游戏中定价算法的设计提供了分析指导。 我们发现了一种新的现象, 即协调偏差, 解释了算法如何无法学习主导策略。