In this article, we study the behavior of the Abels-Garcke-Gr\"un Navier-Stokes-Cahn-Hilliard diffuse-interface model for binary-fluid flows, as the diffuse-interface thickness passes to zero. We consider this so-called sharp-interface limit in the setting of the classical oscillating-droplet problem. To provide reference limit solutions, we derive new analytical expressions for small-amplitude oscillations of a viscous droplet in a viscous ambient fluid in two dimensions. We probe the sharp-interface limit of the Navier-Stokes-Cahn-Hilliard equations by means of an adaptive finite-element method, in which the refinements are guided by an a-posteriori error-estimation procedure. The adaptive-refinement procedure enables us to consider diffuse-interface thicknesses that are significantly smaller than other relevant length scales in the droplet-oscillation problem, allowing an exploration of the asymptotic regime. For two distinct modes of oscillation, we determine the optimal scaling relation between the diffuse-interface thickness parameter and the mobility parameter. Additionally, we examine the effect of deviations from the optimal scaling of the mobility parameter on the approach of the diffuse-interface solution to the sharp-interface solution.


翻译:在本篇文章中,我们研究Abels-Garcke-Gr\ un Navier-Stokes-Cahn-Hilliard 流的二进制流流的“Abels-Garcke-Gr”-“un Navier-Stokes-Stokes-Cahn-Hilliard 扩散-中间模型”的行为,因为扩散界面厚厚度流向零。我们认为,在确定古典振动偏差滴出问题时,存在这种所谓的尖锐界面限制。为了提供参考限制解决方案,我们从两个维度环境流流中的粘度滴滴滴液微振动。我们从纳维-Stokes-Cahn-Hilliard 流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流的尖面界限中,我们通过适应的定调控定定定定定式的定式定式定调化定调化定调化定调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调,两个不同的参数调制的调制的调和调和调和调和调制调制的调制的调制的调制,以最佳调和调制的调制的调和制的调制的调制,以程序使我们能够调和调和调制,使我们能够调制,使我们能够考虑调和制的调制的调制的调制的调制的调制的调制的调和制的调制的调和制的调制的调制的调制的两种模式使我们能够调和制,以调制,以调制的调制的调制的调制的调制的调制的调制的调制的两种的调制,以调制的调和制的调和制的调制的调和制的调制的调制的调制的调制,以调制的调制的调制的调制的调制使我们制使我们调制的调制的调制的调和制的调制的调制的调制

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员