In this article, we study the behavior of the Abels-Garcke-Gr\"un Navier-Stokes-Cahn-Hilliard diffuse-interface model for binary-fluid flows, as the diffuse-interface thickness passes to zero. We consider this so-called sharp-interface limit in the setting of the classical oscillating-droplet problem. To provide reference limit solutions, we derive new analytical expressions for small-amplitude oscillations of a viscous droplet in a viscous ambient fluid in two dimensions. We probe the sharp-interface limit of the Navier-Stokes-Cahn-Hilliard equations by means of an adaptive finite-element method, in which the refinements are guided by an a-posteriori error-estimation procedure. The adaptive-refinement procedure enables us to consider diffuse-interface thicknesses that are significantly smaller than other relevant length scales in the droplet-oscillation problem, allowing an exploration of the asymptotic regime. For two distinct modes of oscillation, we determine the optimal scaling relation between the diffuse-interface thickness parameter and the mobility parameter. Additionally, we examine the effect of deviations from the optimal scaling of the mobility parameter on the approach of the diffuse-interface solution to the sharp-interface solution.
翻译:在本篇文章中,我们研究Abels-Garcke-Gr\ un Navier-Stokes-Cahn-Hilliard 流的二进制流流的“Abels-Garcke-Gr”-“un Navier-Stokes-Stokes-Cahn-Hilliard 扩散-中间模型”的行为,因为扩散界面厚厚度流向零。我们认为,在确定古典振动偏差滴出问题时,存在这种所谓的尖锐界面限制。为了提供参考限制解决方案,我们从两个维度环境流流中的粘度滴滴滴液微振动。我们从纳维-Stokes-Cahn-Hilliard 流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流流的尖面界限中,我们通过适应的定调控定定定定定式的定式定式定调化定调化定调化定调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调和调,两个不同的参数调制的调制的调和调和调和调和调制调制的调制的调制的调制,以最佳调和调制的调制的调和制的调制的调制,以程序使我们能够调和调和调制,使我们能够调制,使我们能够考虑调和制的调制的调制的调制的调制的调制的调制的调和制的调制的调和制的调制的调制的调制的两种模式使我们能够调和制,以调制,以调制的调制的调制的调制的调制的调制的调制的调制的两种的调制,以调制的调和制的调和制的调制的调和制的调制的调制的调制的调制,以调制的调制的调制的调制的调制使我们制使我们调制的调制的调制的调和制的调制的调制的调制