Online gaming is growing faster than ever before, with increasing challenges of providing better user experience. Recommender systems (RS) for online games face unique challenges since they must fulfill players' distinct desires, at different user levels, based on their action sequences of various action types. Although many sequential RS already exist, they are mainly single-sequence, single-task, and single-user-level. In this paper, we introduce a new sequential recommendation model for multiple sequences, multiple tasks, and multiple user levels (abbreviated as M$^3$Rec) in Tencent Games platform, which can fully utilize complex data in online games. We leverage Graph Neural Network and multi-task learning to design M$^3$Rec in order to model the complex information in the heterogeneous sequential recommendation scenario of Tencent Games. We verify the effectiveness of M$^3$Rec on three online games of Tencent Games platform, in both offline and online evaluations. The results show that M$^3$Rec successfully addresses the challenges of recommendation in online games, and it generates superior recommendations compared with state-of-the-art sequential recommendation approaches.


翻译:在线游戏的推荐系统(RS)面临独特的挑战,因为它们必须在不同的用户层次上,根据不同行动类型的行动顺序满足球员的不同愿望。虽然许多相继的RS已经存在,但它们主要是单序列、单任务和单一用户级别。在本文中,我们引入了一个新的顺序建议模式,用于多个序列、多重任务和多个用户级别(以3美元计),该平台可以充分利用网上游戏的复杂数据。我们利用神经网络和多任务学习来设计M3$Rec,以模拟Tencent游戏复杂顺序建议情景中的复杂信息。我们核实了三场Tentent运动平台在线游戏在离线和在线评价中的效果。结果显示,M3美元成功解决了在线游戏中的建议挑战,并产生了与州级顺序建议方法相比更优的建议。

0
下载
关闭预览

相关内容

TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
15+阅读 · 2021年6月27日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员