Novel class discovery (NCD) aims to infer novel categories in an unlabeled dataset leveraging prior knowledge of a labeled set comprising disjoint but related classes. Existing research focuses primarily on utilizing the labeled set at the methodological level, with less emphasis on the analysis of the labeled set itself. Thus, in this paper, we rethink novel class discovery from the labeled set and focus on two core questions: (i) Given a specific unlabeled set, what kind of labeled set can best support novel class discovery? (ii) A fundamental premise of NCD is that the labeled set must be related to the unlabeled set, but how can we measure this relation? For (i), we propose and substantiate the hypothesis that NCD could benefit more from a labeled set with a large degree of semantic similarity to the unlabeled set. Specifically, we establish an extensive and large-scale benchmark with varying degrees of semantic similarity between labeled/unlabeled datasets on ImageNet by leveraging its hierarchical class structure. As a sharp contrast, the existing NCD benchmarks are developed based on labeled sets with different number of categories and images, and completely ignore the semantic relation. For (ii), we introduce a mathematical definition for quantifying the semantic similarity between labeled and unlabeled sets. In addition, we use this metric to confirm the validity of our proposed benchmark and demonstrate that it highly correlates with NCD performance. Furthermore, without quantitative analysis, previous works commonly believe that label information is always beneficial. However, counterintuitively, our experimental results show that using labels may lead to sub-optimal outcomes in low-similarity settings.


翻译:创新类发现 (NCD) 的目的是在未贴标签的数据集中推断创新类别。 现有研究主要侧重于在方法层面使用标签集, 较少强调对标签集本身的分析。 因此, 在本文中, 我们重新思考标签集中的新类发现, 并侧重于两个核心问题:(一) 具体未贴标签集, 何种标签集最能支持新颖类发现? (二) NCD的一个基本前提是, 标签集必须与未贴标签的数据集相关, 但我们如何总是衡量这一关系? 因为 (一) 我们提议并证实以下假设: NCD可以从标签集中获益更多, 与未贴标签集本身相似。 具体地说, 我们建立了一个广泛和大尺度的基准, 在标签/未贴标签的数据集之间具有不同程度相似性, 借助其等级级别结构, 现有的NCD基准必须与未贴标签集挂钩集相关, 并且我们用不同数量 的精确的标签标定的标定值 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Learning from Few Samples: A Survey
Arxiv
77+阅读 · 2020年7月30日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员