Over the past decade, there has been a surge of interest in the transport community in the application of agent-based simulation models to evaluate flexible transit solutions characterized by different degrees of short-term flexibility in routing and scheduling. A central modeling decision in the development of an agent-based simulation model for the evaluation of flexible transit is how one chooses to represent the mode- and route-choices of travelers. The real-time adaptive behavior of travelers is intuitively important to model in the presence of a flexible transit service, where the routing and scheduling of vehicles is highly dependent on supply-demand dynamics at a closer to real-time temporal resolution. We propose a utility-based transit route-choice model with representation of within-day adaptive travel behavior and between-day learning where station-based fixed-transit, flexible-transit, and active-mode alternatives may be dynamically combined in a single path. To enable experimentation, this route-choice model is implemented within an agent-based dynamic public transit simulation framework. Model properties are first explored in a choice between fixed- and flexible-transit modes for a toy network. The framework is then applied to illustrate level-of-service trade-offs and analyze traveler mode choices within a mixed fixed- and flexible transit system in a case study based on a real-life branched transit service in Stockholm, Sweden.
翻译:过去十年来,运输界对采用以代理商为基础的模拟模型的兴趣激增,以评价灵活的过境解决办法,这种模拟模型的特点是在路线和时间安排上具有不同程度的短期灵活性。为评价灵活过境而开发以代理商为基础的模拟模型,其中心示范决定是,如何选择代表旅行者的模式和路线选择。旅行者的实时适应行为对于在灵活的过境服务中树立模型具有直觉重要性,因为车辆的路线和时间安排高度依赖供需动态,更接近实时临时解决办法。我们提出了一个基于公用事业的过境选择模式,其代表的是日常适应性旅行行为和日常学习,其中以站为基础的固定过境、灵活过境和主动模式替代方案可动态地组合在一起。为了进行实验,这种路线选择模式是在基于代理商的动态公共过境模拟框架内实施的。模型特性首先在固定和灵活流动模式之间选择,作为临时临时解决办法。我们提出了一个基于日常适应性旅行行为和日常学习的通用过境选择模式模式。随后,在基于临时服务网络中,采用一个基于物流系统的混合模式,并用一个基于物流的过境运输模式进行案例研究。