The Population-based HIV Impact Assessment (PHIA) is an ongoing project that conducts nationally representative HIV-focused surveys for measuring national and regional progress toward UNAIDS' 90-90-90 targets, the primary strategy to end the HIV epidemic. We believe the PHIA survey offers a unique opportunity to better understand the key factors that drive the HIV epidemics in the most affected countries in sub-Saharan Africa. In this article, we propose a novel causal structural learning algorithm to discover important covariates and potential causal pathways for 90-90-90 targets. Existing constrained-based causal structural learning algorithms are quite aggressive in edge removal. The proposed algorithm preserves more information about important features and potential causal pathways. It is applied to the Malawi PHIA (MPHIA) data set and leads to interesting results. For example, it discovers age and condom usage to be important for female HIV awareness; the number of sexual partners to be important for male HIV awareness; and knowing the travel time to HIV care facilities leads to a higher chance of being treated for both females and males. We further compare and validate the proposed algorithm using BIC and using Monte Carlo simulations, and show that the proposed algorithm achieves improvement in true positive rates in important feature discovery over existing algorithms.
翻译:以人口为基础的艾滋病毒影响评估(PHIA)是一个持续进行的项目,进行具有全国代表性的以艾滋病毒为重点的调查,以衡量国家和区域在实现艾滋病规划署90-90-90目标方面的进展,这是结束艾滋病毒流行的主要战略。我们认为,PHIA调查提供了一个独特的机会,以更好地了解撒哈拉以南非洲受影响最严重的国家艾滋病毒流行的关键因素。在这个文章中,我们提出了一个新的因果结构性学习算法,以发现90-90-90目标的重要共变和潜在因果途径。现有的基于限制的因果结构性学习算法在边缘消除方面相当积极。提议的算法保存了关于重要特征和潜在因果途径的更多信息。它适用于马拉维PHIA(MPHIA)数据集并导致有趣的结果。例如,它发现年龄和避孕套的使用对于女性艾滋病毒意识很重要;性伙伴的数量对于男性艾滋病毒意识很重要;了解艾滋病毒护理设施的旅行时间导致女性和男性获得治疗的更大机会。我们进一步比较和验证拟议的使用BIC和使用蒙特卡洛模拟的算法,并显示拟议的数字在重要的真实比例中实现了现有的积极率的改进。