In recent years, malware becomes more threatening. Concerning the increasing malware variants, there comes Machine Learning (ML)-based and Deep Learning (DL)-based approaches for heuristic detection. Nevertheless, the prediction accuracy of both needs to be improved. In response to the above issues in the PE malware domain, we propose the DL-based approaches for detection and use static-based features fed up into models. The contributions are as follows: we recapitulate existing malware detection methods. That is, we propose a vec-torized representation model of the malware instruction layer and semantic layer based on Glove. We implement a neural network model called MCC_RCNN (Malware Detection and Recurrent Convolutional Neural Network), comprising of the combination with CNN and RNN. Moreover, we provide a description of feature fusion in static behavior levels. With the numerical results generated from several comparative experiments towards evaluating the Glove-based vectoriza-tion, MCC_RCNN-based classification methodology and feature fusion stages, our proposed classification methods can obtain a higher prediction accuracy than the other baseline methods.
翻译:近年来,恶意软件变得更加具有威胁性。关于不断增长的恶意软件变异,我们提出了基于机器学习(ML)和深层学习(DL)的超常检测方法。然而,需要改进这两种方法的预测准确性。针对PE恶意软件领域的上述问题,我们提出了基于DL的检测和使用静态功能的方法,这些方法被注入模型中。贡献如下:我们总结了现有的恶意软件检测方法。这就是说,我们提出了一个基于Glove的恶意软件教学层和语义层的虚拟化代表模型。我们采用了称为 MCC_RCNNN(邮件探测和常规革命神经网络)的神经网络模型,由CNN和RNN的组合组成。此外,我们介绍了静态行为水平的特征融合情况。我们从评估基于Glove的病媒、以MC_RCNNN为基础的分类方法和特征融合阶段的若干比较实验中得出的数字结果,我们提议的分类方法可以比其他基线方法获得更高的预测准确性。