The rapid development of the Transformer-based Large Language Models (LLMs) in recent years has been closely linked to their ever-growing and already enormous sizes. Many LLMs contain hundreds of billions of parameters and require dedicated hardware resources for training and inference. One of the key challenges inherent to the Transformer architecture is the requirement to support numerous non-linear transformations that involves normalization. For instance, each decoder block typically contains at least one Softmax operation and two Layernorms. The computation of the corresponding normalization scaling factors becomes a major bottleneck as it requires spatial collective operations. In other words, when it comes to the computation of denominators for Softmax and Layernorm, all vector elements must be aggregated into a single location, requiring significant communication. These collective operations slow down inference on Transformers by approximately 20%, defeating the whole purpose of distributed in-memory compute. In this work, we propose an extremely efficient technique that can completely hide the overhead caused by such collective operations. Note that each Softmax and Layernorm operation is typically followed by a linear layer. Since non-linear and linear operations are performed on different hardware engines, they can be easily parallelized once the algebra allows such commutation. By leveraging the inherent properties of linear operations, we can defer the normalization of the preceding Softmax and Layernorm until after the linear layer is computed. Now we can compute the collective scaling factors concurrently with the matrix multiplication and completely hide the latency of the former behind the latter. Such parallelization preserves the numerical accuracy while significantly improving the hardware utilization and reducing the overall latency.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年5月22日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
12+阅读 · 2019年2月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
12+阅读 · 2023年5月22日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
12+阅读 · 2019年2月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员