Information-directed sampling (IDS) has recently demonstrated its potential as a data-efficient reinforcement learning algorithm. However, it is still unclear what is the right form of information ratio to optimize when contextual information is available. We investigate the IDS design through two contextual bandit problems: contextual bandits with graph feedback and sparse linear contextual bandits. We provably demonstrate the advantage of contextual IDS over conditional IDS and emphasize the importance of considering the context distribution. The main message is that an intelligent agent should invest more on the actions that are beneficial for the future unseen contexts while the conditional IDS can be myopic. We further propose a computationally-efficient version of contextual IDS based on Actor-Critic and evaluate it empirically on a neural network contextual bandit.
翻译:信息导向抽样(IDS)最近展示了它作为数据高效强化学习算法的潜力,然而,仍然不清楚在有背景信息时,什么是最佳信息比的正确形式。我们通过两个背景强盗问题调查IDS的设计:背景强盗,附有图表反馈和稀少的线性背景强盗。我们可以明显地展示背景性IDS相对于有条件的IDS的优势,并强调考虑背景分布的重要性。主要信息是,智能代理人应该更多地投资于有利于未来未知环境的行动,而有条件的IDS可以是近视型的。我们进一步提议基于行动-批评的计算高效背景IDS版本,并用经验评估神经网络背景强盗。