Recent studies have revealed the vulnerability of graph convolutional networks (GCNs) to edge-perturbing attacks, such as maliciously inserting or deleting graph edges. However, a theoretical proof of such vulnerability remains a big challenge, and effective defense schemes are still open issues. In this paper, we first generalize the formulation of edge-perturbing attacks and strictly prove the vulnerability of GCNs to such attacks in node classification tasks. Following this, an anonymous graph convolutional network, named AN-GCN, is proposed to counter against edge-perturbing attacks. Specifically, we present a node localization theorem to demonstrate how the GCN locates nodes during its training phase. In addition, we design a staggered Gaussian noise based node position generator, and devise a spectral graph convolution based discriminator in detecting the generated node positions. Further, we give the optimization of the above generator and discriminator. AN-GCN can classify nodes without taking their position as input. It is demonstrated that the AN-GCN is secure against edge-perturbing attacks in node classification tasks, as AN-GCN classifies nodes without the edge information and thus makes it impossible for attackers to perturb edges anymore. Extensive evaluations demonstrated the effectiveness of the general edge-perturbing attack model in manipulating the classification results of the target nodes. More importantly, the proposed AN-GCN can achieve 82.7% in node classification accuracy without the edge-reading permission, which outperforms the state-of-the-art GCN.
翻译:最近的研究揭示了图形混凝土网络(GCNs)易受边缘扰动攻击的脆弱性,例如恶意插入或删除图形边缘。然而,这种脆弱性的理论证据仍然是一项巨大的挑战,有效的防御计划仍然是尚未解决的问题。在本文件中,我们首先概括了边缘扰动攻击的提法,并严格地证明GCNs在节点分类任务中易受此类攻击的伤害。在此之后,建议建立一个名为AN-GCN的匿名图形共振网络,以对抗边缘扰动攻击。具体地说,我们提出了一个节点本地化理论,以表明GCNC如何在其培训阶段找到节点。此外,我们设计了一个基于悬浮高斯噪音的节点生成器,并设计了一个基于光谱图变色的导师,以探测生成节点位置位置。我们优化了上述发电机和导师。AN-GCNC可以在不将其位置归为输入方。我们展示了AN-GCNCNCNCNC在不前端攻击的边缘性攻击中可以避免边缘攻击,而无需将80-CNservereal-reading 目标的升级结果转化为AGservial-assal-asserview dal-assal-asslation lievlaviewdal 。作为AN-asslationaldaldaldaldaldaldald lievationdaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald,这样在Adaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldddaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald,这样将G,将G,将G,