The layout optimization of the heat conduction is essential during design in engineering, especially for thermal sensible products. When the optimization algorithm iteratively evaluates different loading cases, the traditional numerical simulation methods used usually lead to a substantial computational cost. To effectively reduce the computational effort, data-driven approaches are used to train a surrogate model as a mapping between the prescribed external loads and various geometry. However, the existing model are trained by data-driven methods which requires intensive training samples that from numerical simulations and not really effectively solve the problem. Choosing the steady heat conduction problems as examples, this paper proposes a Physics-driven Convolutional Neural Networks (PD-CNN) method to infer the physical field solutions for random varied loading cases. After that, the Particle Swarm Optimization (PSO) algorithm is used to optimize the sizes and the positions of the hole masks in the prescribed design domain, and the average temperature value of the entire heat conduction field is minimized, and the goal of minimizing heat transfer is achieved. Compared with the existing data-driven approaches, the proposed PD-CNN optimization framework not only predict field solutions that are highly consistent with conventional simulation results, but also generate the solution space with without any pre-obtained training data.


翻译:优化热导体的布局在设计工程设计过程中至关重要,特别是热感应产品。当优化算法迭代评估不同的装货案例时,使用的传统数字模拟方法通常会导致大量的计算成本。为有效减少计算努力,使用数据驱动方法来培训代用模型,作为指定外部负荷和各种几何之间的绘图;然而,现有模型是用数据驱动方法培训的,这些方法需要从数字模拟中进行密集培训,而不是真正有效地解决问题。选择稳定的热导体问题作为例子,本文建议采用物理驱动的演动神经网络(PD-CNN)方法,以推断随机不同装货案例的物理场解决方案。此后,利用粒子Swarm优化算法来优化指定设计域外负载和各种几何体的大小和位置,最大限度地缩小整个热导场的平均温度值,并实现尽可能减少热导体传输的目标。与现有的数据驱动方法相比,拟议的PD-CNN优化框架不仅预测了随机的实地解决办法,而且还预测了与任何传统模拟的实地解决办法的高度一致。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
2+阅读 · 2022年4月17日
Arxiv
19+阅读 · 2020年7月13日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员