The intricacy of 3D surfaces often results cutting-edge point cloud denoising (PCD) models in surface degradation including remnant noise, wrongly-removed geometric details. Although using multi-scale patches to encode the geometry of a point has become the common wisdom in PCD, we find that simple aggregation of extracted multi-scale features can not adaptively utilize the appropriate scale information according to the geometric information around noisy points. It leads to surface degradation, especially for points close to edges and points on complex curved surfaces. We raise an intriguing question -- if employing multi-scale geometric perception information to guide the network to utilize multi-scale information, can eliminate the severe surface degradation problem? To answer it, we propose a Multi-offset Denoising Network (MODNet) customized for multi-scale patches. First, we extract the low-level feature of three scales patches by patch feature encoders. Second, a multi-scale perception module is designed to embed multi-scale geometric information for each scale feature and regress multi-scale weights to guide a multi-offset denoising displacement. Third, a multi-offset decoder regresses three scale offsets, which are guided by the multi-scale weights to predict the final displacement by weighting them adaptively. Experiments demonstrate that our method achieves new state-of-the-art performance on both synthetic and real-scanned datasets.
翻译:三维表面的复杂性往往导致地表退化的尖端点云分解模型(PCD),包括残余的噪音,错误地移动的几何细节。虽然使用多尺度的补丁来编码一个点的几何性格已成为PCD中常见的智慧,但我们发现,根据噪声点周围的几何信息,抽取的多尺度特性的简单汇总无法适应地利用适当的规模信息。这导致地表退化,特别是接近复杂弯曲表面边缘和点的点。我们提出了一个令人感兴趣的问题 -- -- 如果使用多尺度的几何感知信息来指导网络使用多尺度的信息,可以消除严重地表退化问题?为了回答这个问题,我们提议了一个多尺度的多尺度代位代代言网络(MODNet),为多尺度补丁基补码补码补码的三种尺度差分的低级特征。第二,多尺度的感知模块旨在为每个尺度的地段特征和后退缩多尺度的多尺度加权加权信息,通过多尺度的跨尺度的跨尺度的跨级计算方法来显示多尺度的跨级的跨级变换变。