Transposed convolution is crucial for generating high-resolution outputs, yet has received little attention compared to convolution layers. In this work we revisit transposed convolution and introduce a novel layer that allows us to place information in the image selectively and choose the `stroke breadth' at which the image is synthesized, whilst incurring a small additional parameter cost. For this we introduce three ideas: firstly, we regress offsets to the positions where the transpose convolution results are placed; secondly we broadcast the offset weight locations over a learnable neighborhood; and thirdly we use a compact parametrization to share weights and restrict offsets. We show that simply substituting upsampling operators with our novel layer produces substantial improvements across tasks as diverse as instance segmentation, object detection, semantic segmentation, generative image modeling, and 3D magnetic resonance image enhancement, while outperforming all existing variants of transposed convolutions. Our novel layer can be used as a drop-in replacement for 2D and 3D upsampling operators and the code will be publicly available.
翻译:转基因的组合对于产生高分辨率输出至关重要, 但与相交层相比却很少受到关注 。 在这项工作中, 我们重现转基因的组合, 并引入了一个新的层次, 使我们能够有选择地在图像中放置信息, 并选择图像合成的“ 串点宽度 ”, 同时带来少量的额外参数成本 。 为此, 我们引入了三个想法 : 首先, 我们回归到转换变种结果的位置 ; 第二, 我们向一个可学习的邻里播送抵消重量位置 ; 第三, 我们使用缩压的平衡来分享重量并限制抵消 。 我们显示, 简单地用我们的新层替换升级的操作器来替换新增加的操作器, 产生大量的任务的改进, 包括实例分割、 对象检测、 语义分解、 突变型图像建模 和 3D 磁共振动图像增强, 同时超过所有现有的转换变体的变体 。 我们的新层可以用作 2D 和 3D 采集操作器和代码可以公开使用 。