Privacy-preserving nerual network inference has been well studied while homomorphic CNN training still remains an open challenging task. In this paper, we present a practical solution to implement privacy-preserving CNN training based on mere Homomorphic Encryption (HE) technique. To our best knowledge, this is the first attempt successfully to crack this nut and no work ever before has achieved this goal. Several techniques combine to make it done: (1) with transfer learning, privacy-preserving CNN training can be reduced to homomorphic neural network training, or even multiclass logistic regression (MLR) training; (2) via a faster gradient variant called $\texttt{Quadratic Gradient}$, an enhanced gradient method for MLR with a state-of-the-art performance in converge speed is applied in this work to achieve high performance; (3) we employ the thought of transformation in mathematics to transform approximating Softmax function in encryption domain to the well-studied approximation of Sigmoid function. A new type of loss function is alongside been developed to complement this change; and (4) we use a simple but flexible matrix-encoding method named $\texttt{Volley Revolver}$ to manage the data flow in the ciphertexts, which is the key factor to complete the whole homomorphic CNN training. The complete, runnable C++ code to implement our work can be found at: https://github.com/petitioner/HE.CNNtraining. We select $\texttt{REGNET\_X\_400MF}$ as our pre-train model for using transfer learning. We use the first 128 MNIST training images as training data and the whole MNIST testing dataset as the testing data. The client only needs to upload 6 ciphertexts to the cloud and it takes $\sim 21$ mins to perform 2 iterations on a cloud with 64 vCPUs, resulting in a precision of $21.49\%$.


翻译:摘要: 隐私保护的神经网络推断已被广泛研究,而同态卷积神经网络(CNN)训练仍然是一个具有挑战性的问题。本文提出了一种基于纯同态加密(HE)技术实现隐私保护的CNN训练的实用解决方案。据我们所知,这是第一个成功攻克这一难题的尝试。本文采用了多种技术:(1)通过迁移学习,可以将隐私保护的CNN训练简化为同态神经网络训练,甚至是多类别逻辑回归(MLR)训练;(2)通过更快的梯度变体$\texttt{Quadratic Gradient}$,本文应用了一种改进的MLR梯度方法,具有最先进的收敛速度;(3)采用数学中的变换思想,将加密域中的Softmax函数逼近变换为研究充分的Sigmoid函数逼近的新型损失函数,(4)采用一种简单但灵活的矩阵编码方法$\texttt{Volley Revolver}$在密文中管理数据流,是完成整个同态CNN训练的关键因素。在本文的实现中,使用$\texttt{REGNET\_X\_400MF}$作为预训练模型。我们使用前128个MNIST训练图像作为训练数据,使用整个MNIST测试数据集作为测试数据。客户端只需将6个密文上传到云端,云端使用64个vCPUs执行2次迭代,耗时约21分钟,精度为21.49%。 注意事项:需要在翻译中用英文标记专有名词。

0
下载
关闭预览

相关内容

专知会员服务
11+阅读 · 2021年9月10日
专知会员服务
38+阅读 · 2020年12月20日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
keras系列︱深度学习五款常用的已训练模型
数据挖掘入门与实战
10+阅读 · 2018年3月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
19+阅读 · 2020年7月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
keras系列︱深度学习五款常用的已训练模型
数据挖掘入门与实战
10+阅读 · 2018年3月27日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员