Traffic intersections are important scenes that can be seen almost everywhere in the traffic system. Currently, most simulation methods perform well at highways and urban traffic networks. In intersection scenarios, the challenge lies in the lack of clearly defined lanes, where agents with various motion plannings converge in the central area from different directions. Traditional model-based methods are difficult to drive agents to move realistically at intersections without enough predefined lanes, while data-driven methods often require a large amount of high-quality input data. Simultaneously, tedious parameter tuning is inevitable involved to obtain the desired simulation results. In this paper, we present a novel adaptive and planning-aware hybrid-driven method (TraInterSim) to simulate traffic intersection scenarios. Our hybrid-driven method combines an optimization-based data-driven scheme with a velocity continuity model. It guides the agent's movements using real-world data and can generate those behaviors not present in the input data. Our optimization method fully considers velocity continuity, desired speed, direction guidance, and planning-aware collision avoidance. Agents can perceive others' motion planning and relative distance to avoid possible collisions. To preserve the individual flexibility of different agents, the parameters in our method are automatically adjusted during the simulation. TraInterSim can generate realistic behaviors of heterogeneous agents in different traffic intersection scenarios in interactive rates. Through extensive experiments as well as user studies, we validate the effectiveness and rationality of the proposed simulation method.


翻译:交通路口是交通系统中无处不在的重要场景。目前,大多数仿真方法在高速公路和城市交通网络上表现良好。在交叉口场景中,挑战在于缺乏明确定义的车道,各种运动规划的智能体从不同的方向汇集在中心区域。传统的基于模型的方法难以在没有足够预定义车道的交叉口处实现智能体的真实移动,而基于数据的方法通常需要大量高质量的输入数据。同时,精细的参数调整是不可避免的,以获得所需的仿真结果。在本文中,我们提出了一种新颖的适应性和规划感知混合驱动方法(TraInterSim)来模拟交通路口场景。我们的混合驱动方法将基于优化的数据驱动方案与速度连续性模型相结合。它使用真实世界数据指导智能体的行动,并可以生成输入数据中不存在的行为。我们的优化方法充分考虑了速度连续性、期望速度、方向指导和规划感知式的避碰。智能体可以感知他人的运动规划和相对距离,以避免可能的碰撞。为了保持不同智能体的个体灵活性,我们的方法中的参数在仿真期间会自动进行调整。TraInterSim 可以以交互速率生成不同交通路口场景中异构智能体的真实行为。通过广泛的实验以及用户研究,我们验证了所提出的仿真方法的有效性和合理性。

0
下载
关闭预览

相关内容

JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
VIP会员
相关VIP内容
JCIM丨DRlinker:深度强化学习优化片段连接设计
专知会员服务
6+阅读 · 2022年12月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
相关基金
国家自然科学基金
8+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员