Since infinitely wide neural networks in the kernel regime are random feature models, the success of contemporary deep learning lies in the rich regime, where a satisfying theory should explain not only the convergence of gradient descent but the learning of features along the way. Such a theory should also cover phenomena observed by practicioners including the Edge of Stability (EOS) and the catapult mechanism. For a practically relevant theory in the limit, neural network parameterizations have to efficiently reproduce limiting behavior as width and depth are scaled up. While widthwise scaling is mostly settled, depthwise scaling is solved only at initialization by the Edge of Chaos (EOC). During training, scaling up depth is either done by inversely scaling the learning rate or adding residual connections. We propose $(1)$ the Normalized Update Parameterization ($\nu$P) to solve this issue by growing hidden layer sizes depthwise inducing the regularized evolution of preactivations, $(2)$ a hypothetical explanation for feature learning via the cosine of new and cumulative parameter updates and $(3)$ a geometry-aware learning rate schedule that is able to prolong the catapult phase indefinitely. We support our hypotheses and demonstrate the usefulness of $\nu$P and the learning rate schedule by empirical evidence.
翻译:暂无翻译