Document summarization, as a fundamental task in natural language generation, aims to generate a short and coherent summary for a given document. Controllable summarization, especially of the length, is an important issue for some practical applications, especially how to trade-off the length constraint and information integrity. In this paper, we propose an \textbf{A}daptive \textbf{L}ength \textbf{C}ontrolling \textbf{O}ptimization (\textbf{ALCO}) method to leverage two-stage abstractive summarization model via reinforcement learning. ALCO incorporates length constraint into the stage of sentence extraction to penalize the overlength extracted sentences. Meanwhile, a saliency estimation mechanism is designed to preserve the salient information in the generated sentences. A series of experiments have been conducted on a wildly-used benchmark dataset \textit{CNN/Daily Mail}. The results have shown that ALCO performs better than the popular baselines in terms of length controllability and content preservation.
翻译:作为自然语言生成的一项基本任务,文件总和旨在为某一文件产生一个简短和连贯的概要。可控制的总和,特别是长度的概要,是某些实际应用的一个重要问题,特别是如何权衡长度限制和信息完整性。在本文中,我们建议采用一个\ textbf{A}daptition \textbf{L}ength\ textbf{C}}ontrolling\ textb{O}pressimization (\ textbf{ALCO}) 方法,通过强化学习来利用两阶段的抽象总和模型。 ALCO将长度限制纳入刑罚提取阶段以惩罚超长的刑期。 同时,我们设计了一个突出的估算机制,以保存生成的句子中的突出信息。 已经对大量使用的基准数据集 \ textitleitle{CNN/Daily Mail} 进行了一系列实验。 结果表明,ALCO在可控制性和内容保存方面比流行的基线要好。