Computer vision systems are remarkably vulnerable to adversarial perturbations. Transfer-based adversarial images are generated on one (source) system and used to attack another (target) system. In this paper, we take the first step to investigate transfer-based targeted adversarial images in a realistic scenario where the target system is trained on some private data with its inventory of semantic labels not publicly available. Our main contributions include an extensive human-judgment-based evaluation of attack success on the Google Cloud Vision API and additional analysis of the different behaviors of Google Cloud Vision in face of original images vs. adversarial images. Resources are publicly available at \url{https://github.com/ZhengyuZhao/Targeted-Tansfer/blob/main/google_results.zip}.
翻译:计算机视觉系统极易受到对抗性干扰,一个(源)系统生成基于传输的对抗性图像,用来攻击另一个(目标)系统,在本文件中,我们采取的第一步是在现实的情景下调查基于转让的、有针对性的对抗性图像,目标系统在现实的情景下接受一些私人数据培训,并拥有无法公开提供的语义标签清单,我们的主要贡献包括:对谷歌云视觉API的攻击成功与否进行广泛的基于人类判断的评估,以及针对原始图像与对抗性图像相比,对谷歌云视觉的不同行为进行进一步的分析。