In recent years, there has been a growing interest in solving various graph coloring problems in the streaming model. The initial algorithms in this line of work are all crucially randomized, raising natural questions about how important a role randomization plays in streaming graph coloring. A couple of very recent works have made progress on this question: they prove that deterministic or even adversarially robust coloring algorithms (that work on streams whose updates may depend on the algorithm's past outputs) are considerably weaker than standard randomized ones. However, there is still a significant gap between the upper and lower bounds for the number of colors needed (as a function of the maximum degree $\Delta$) for robust coloring and multipass deterministic coloring. We contribute to this line of work by proving the following results. In the deterministic semi-streaming (i.e., $O(n \cdot \text{polylog } n)$ space) regime, we present an algorithm that achieves a combinatorially optimal $(\Delta+1)$-coloring using $O(\log{\Delta} \log\log{\Delta})$ passes. This improves upon the prior $O(\Delta)$-coloring algorithm of Assadi, Chen, and Sun (STOC 2022) at the cost of only an $O(\log\log{\Delta})$ factor in the number of passes. In the adversarially robust semi-streaming regime, we design an $O(\Delta^{5/2})$-coloring algorithm that improves upon the previously best $O(\Delta^{3})$-coloring algorithm of Chakrabarti, Ghosh, and Stoeckl (ITCS 2022). Further, we obtain a smooth colors/space tradeoff that improves upon another algorithm of the said work: whereas their algorithm uses $O(\Delta^2)$ colors and $O(n\Delta^{1/2})$ space, ours, in particular, achieves (i)~$O(\Delta^2)$ colors in $O(n\Delta^{1/3})$ space, and (ii)~$O(\Delta^{7/4})$ colors in $O(n\Delta^{1/2})$ space.


翻译:近些年来,人们越来越有兴趣解决 流式模型中各种图表颜色的问题。 然而, 这行的初始算法都非常随机化, 引起了关于流式图形颜色颜色中随机化作用的重要性的自然问题。 一些最近的工作在这个问题上取得了进展: 它们证明, 确定性甚至敌对性强的颜色算法( 这些流的更新可能取决于算法过去的产出) 大大弱于标准随机化的数据。 然而, 在所需的颜色数量的上下限之间仍然存在着巨大的差距 : 最强的颜色设计 $\Delta$\D$。 我们通过证明以下结果来推动这项工作。 在确定性半流的半流中( $( n)\dot\ text{poly} n) 空间制度中, 我们的变色性算法( =D$+1美元) 的上下限值之间仍然存在巨大的差距 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
46+阅读 · 2020年7月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月22日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员