项目名称: 高功率密度芯片微流道冷却的基础研究

项目编号: No.51206187

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 工程热物理与能源利用学科

项目作者: 巩亮

作者单位: 中国石油大学(华东)

项目金额: 25万元

中文摘要: 随着芯片集成度的指数式增长,单位面积上的功耗也急剧增加。为了降低器件的信噪比,防止性能退化和封装失效,必须要对集成电路进行有效地冷却。其中,硅片键合微流道冷却模式具有热阻低、冷却效率高、易于芯片集成等特点,具有较大的发展潜力。本项目针对硅片键合微流道冷却模式,从"微流道低压降强化换热"、"微流道流动减阻"及"降低微尺度热应力"三个方面对高功率密度芯片微流道冷却进行系统综合的数值及实验研究。研究包括:数值及实验研究流道几何特性、冷却介质以及热沉材料等对微流道内流动与换热特性的影响;对流动转捩点及相变流动特点进行可视化测量;数值及实验研究电场对纳米流体及减阻溶剂在微流道内流动减阻及换热的影响;实验研究超疏水表面对微流道流动减阻的影响;数值研究流动换热与芯片热应力的关系;最后以芯片冷却及安全为指标设计并优化适用于高功率密度芯片的微流道冷却方案。为解决高功率密度芯片冷却提供理论指导。

中文关键词: 芯片冷却;微流道;强化传热;结构优化;热应力

英文摘要: With the rapid exponential growth of integrated level, the power dissipation per unit area of chip keeps increasing sharply. To reduce the Signal Noise Ratio (SNR) of electronics and protect them from performance degradation and package failure, it is necessary to implement a cooling process to efficiently lower the temperature of the integrated circuit. In all of cooling modes, the microchannel cooling method with a microchannel heat sink bonded on a silicon wafer, has greater potential because of the low thermal resistance, high cooling efficiency and easy integration with chip. This project focus on systematic and synthetical investigation on the characteristics of microchannels cooling to the high power density chips, which includes enhancing the heat transfer capability by using microchannels, reducing the flow resistance and decreasing the thermal stress. The main contents are as following: numerically and experimentally study the effects of microchannel geometry, cooling medium and microchannel material on the characteristics of fluid flow and heat transfer in microscale; experimentally measure the flow field transition and the fluid phase change by utilizing visualization techniques; numerically and experimentally study the flow resistance and heat transfer by using nanofluids with drag reducing agent (

英文关键词: chip cooling;microchannels;enhanced heat transfer;structure optimization;thermal stress

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
智能交通管理系统发展趋势
专知会员服务
18+阅读 · 2022年3月21日
轻量化神经网络卷积设计研究进展
专知会员服务
54+阅读 · 2021年10月24日
【经典书】图论第四版,180页pdf
专知会员服务
143+阅读 · 2021年7月2日
专知会员服务
18+阅读 · 2021年6月29日
2021年中国人工智能在工业领域的应用研究报告(附报告)
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
造火箭还是挤牙膏?苹果又有新芯片了
ZEALER订阅号
0+阅读 · 2022年1月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
智能交通管理系统发展趋势
专知会员服务
18+阅读 · 2022年3月21日
轻量化神经网络卷积设计研究进展
专知会员服务
54+阅读 · 2021年10月24日
【经典书】图论第四版,180页pdf
专知会员服务
143+阅读 · 2021年7月2日
专知会员服务
18+阅读 · 2021年6月29日
2021年中国人工智能在工业领域的应用研究报告(附报告)
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员