Motivated by a real-world problem of blood coagulation control in Heparin-treated patients, we use Stochastic Differential Equations (SDEs) to formulate a new class of sequential prediction problems -- with an unknown latent space, unknown non-linear dynamics, and irregular sparse observations. We introduce the Neural Eigen-SDE (NESDE) algorithm for sequential prediction with sparse observations and adaptive dynamics. NESDE applies eigen-decomposition to the dynamics model to allow efficient frequent predictions given sparse observations. In addition, NESDE uses a learning mechanism for adaptive dynamics model, which handles changes in the dynamics both between sequences and within sequences. We demonstrate the accuracy and efficacy of NESDE for both synthetic problems and real-world data. In particular, to the best of our knowledge, we are the first to provide a patient-adapted prediction for blood coagulation following Heparin dosing in the MIMIC-IV dataset. Finally, we publish a simulated gym environment based on our prediction model, for experimentation in algorithms for blood coagulation control.
翻译:受Heparin治疗的病人在血液凝固控制方面实际存在问题,因此,我们利用Stochatic 差异化模型(SDEs)来提出新的一系列连续预测问题 -- -- 其潜在空间未知,非线性动态不明,观测不规律。我们采用了神经Eigen-SDE(NESDE)算法,进行连续预测,进行观测和适应性动态。NESDE(NESDE)对动态模型进行乙基分解,以便能高效地经常预测观测。此外,NESDE还利用适应性动态模型的学习机制,处理序列和序列内动态的变化。我们展示了NESDE在合成问题和实际世界数据方面的准确性和有效性。特别是根据我们的知识,我们首先对在MIMIC-IV数据集中Heparin剂量后进行血液凝固后进行病人适应性预测。最后,我们根据我们的预测模型,公布了一个模拟体操环境,用于血液凝固控制算法的实验。