In this paper, we develop and open-source, for the first time, a square-root filter (SRF)-based visual-inertial navigation system (VINS), termed sqrtVINS, which is ultra-fast, numerically stable, and capable of dynamic initialization even under extreme conditions (i.e., extremely small time window). Despite recent advancements in VINS, resource constraints and numerical instability on embedded (robotic) systems with limited precision remain critical challenges. A square-root covariance-based filter offers a promising solution by providing numerical stability, efficient memory usage, and guaranteed positive semi-definiteness. However, canonical SRFs suffer from inefficiencies caused by disruptions in the triangular structure of the covariance matrix during updates. The proposed method significantly improves VINS efficiency with a novel Cholesky decomposition (LLT)-based SRF update, by fully exploiting the system structure to preserve the structure. Moreover, we design a fast, robust, dynamic initialization method, which first recovers the minimal states without triangulating 3D features and then efficiently performs iterative SRF update to refine the full states, enabling seamless VINS operation. The proposed LLT-based SRF is extensively verified through numerical studies, demonstrating superior numerical stability and achieving robust efficient performance on 32-bit single-precision floats, operating at twice the speed of state-of-the-art (SOTA) methods. Our initialization method, tested on both mobile workstations and Jetson Nano computers, achieving a high success rate of initialization even within a 100 ms window under minimal conditions. Finally, the proposed sqrtVINS is extensively validated across diverse scenarios, demonstrating strong efficiency, robustness, and reliability. The full open-source implementation is released to support future research and applications.
翻译:暂无翻译