We show that solution to the Hermite-Pad\'{e} type I approximation problem leads in a natural way to a subclass of solutions of the Hirota (discrete Kadomtsev-Petviashvili) system and of its adjoint linear problem. Our result explains the appearence of various ingredients of the integrable systems theory in application to multiple orthogonal polynomials, numerical algorthms, random matrices, and in other branches of mathematical physics and applied mathematics where the Hermite-Pad\'{e} approximation problem is relevant. We present also the geometric algorithm, based on the notion of Desargues maps, of construction of solutions of the problem in the projective space over the field of rational functions. As a byproduct we obtain the corresponding generalization of the Wynn recurrence. We isolate the boundary data of the Hirota system which provide solutions to Hermite-Pad\'{e} problem showing that the corresponding reduction lowers dimensionality of the system. In particular, we obtain certain equations which, in addition to the known ones given by Paszkowski, can be considered as direct analogs of the Frobenius identities. We study the place of the reduced system within the integrability theory, which results in finding multidimensional (in the sense of number of variables) extension of the discrete-time Toda chain equations.
翻译:本文展示了Hermite-Padé I型逼近问题的解自然地导致了Hirota(离散Kadomtsev-Petviashvili)系统及其伴随的线性问题的解的一个子类。我们的结果解释了可积系统理论在多重正交多项式、数值算法、随机矩阵和其他应用数学和数理物理学分支中,与Hermite-Padé逼近问题的相关性。我们还在有理函数域上的射影空间上,基于Desargues映射的概念,提出了构建问题解的几何算法。作为副产品,我们得到了相应的Wynn递归的推广。我们分离了Hirota系统的边界数据,提供了解决Hermite-Padé问题的解,同时显示了相应约化降低了系统的维数。特别地,我们得到了一些方程,除了Paszkowski已知的方程之外,可以被看作Frobenius恒等式的直接类比。我们研究了约化系统在可积性理论中的位置,从而得到了离散时间Toda链方程的多维(变量数量的意义上)扩展。