Numerical methods of the ADER family, in particular finite-element ADER-DG and finite-volume ADER-WENO methods, are among the most accurate numerical methods for solving quasilinear PDE systems. The internal structure of ADER-DG and ADER-WENO numerical methods contains a large number of basic linear algebra operations related to matrix multiplications. The main interface of software libraries for matrix multiplications for high-performance computing is BLAS. This paper presents an effective method for integration the standard functions of the BLAS interface into the implementation of these numerical methods. The calculated matrices are small matrices; at the same time, the proposed implementation makes it possible to effectively use existing JIT technologies. The proposed approach immediately operates on AoS, which makes it possible to efficiently calculate flux, source and non-conservative terms without need to carry out transposition. The obtained computational costs demonstrated that the effective implementation, based on the use of the JIT functions of the BLAS, outperformed both the implementation based on the general BLAS functions and the vanilla implementations by several orders of magnitude. At the same time, the complexity of developing an implementation based on the approach proposed in this work does not exceed the complexity of developing a vanilla implementation.
翻译:暂无翻译