The NP-complete graph problem Cluster Editing seeks to transform a static graph into disjoint union of cliques by making the fewest possible edits to the edge set. We introduce a natural interpretation of this problem in the setting of temporal graphs, whose edge-sets are subject to discrete changes over time, which we call Editing to Temporal Cliques. This problem is NP-complete even when restricted to temporal graphs whose underlying graph is a path, but we obtain two polynomial-time algorithms for special cases with further restrictions. In the static setting, it is well-known that a graph is a disjoint union of cliques if and only if it contains no induced copy of $P_3$; we demonstrate that no general characterisation involving sets of at most four vertices can exist in the temporal setting, but obtain a complete characterisation involving forbidden configurations on at most five vertices. This characterisation gives rise to an FPT algorithm parameterised simultaneously by the permitted number of modifications and the lifetime of the temporal graph, which uses a simple search-tree strategy.
翻译:NP- 完整图形问题群集编辑试图将静态图形转换成不相联的晶片, 使边缘部分的编辑尽可能少。 我们在设定时间图时引入了对该问题的自然解释, 时间图的边缘部分会随着时间变化而变化, 我们称之为时空晶体。 这个问题即使限于其底图路程的时图, 也属于NP- 完整。 但是我们获得了两种具有进一步限制的特殊案例的多元时算法。 在静态设置中, 众所周知, 图表是晶片的脱节, 如果并且只有它没有 $P_ 3 的诱导副本, 我们证明在时间设置中不能存在最多涉及四组脊椎的一般特性, 但是在最多五个脊椎上不能包含被禁止的配置的完整特性。 这种特征化产生了一种FPT 算法参数, 由允许的修改次数和时间图的寿命同时使用简单的搜索策略。