This paper addresses domain adaptation for the pixel-wise classification of remotely sensed data using deep neural networks (DNN) as a strategy to reduce the requirements of DNN with respect to the availability of training data. We focus on the setting in which labelled data are only available in a source domain DS, but not in a target domain DT. Our method is based on adversarial training of an appearance adaptation network (AAN) that transforms images from DS such that they look like images from DT. Together with the original label maps from DS, the transformed images are used to adapt a DNN to DT. We propose a joint training strategy of the AAN and the classifier, which constrains the AAN to transform the images such that they are correctly classified. In this way, objects of a certain class are changed such that they resemble objects of the same class in DT. To further improve the adaptation performance, we propose a new regularization loss for the discriminator network used in domain adversarial training. We also address the problem of finding the optimal values of the trained network parameters, proposing an unsupervised entropy based parameter selection criterion which compensates for the fact that there is no validation set in DT that could be monitored. As a minor contribution, we present a new weighting strategy for the cross-entropy loss, addressing the problem of imbalanced class distributions. Our method is evaluated in 42 adaptation scenarios using datasets from 7 cities, all consisting of high-resolution digital orthophotos and height data. It achieves a positive transfer in all cases, and on average it improves the performance in the target domain by 4.3% in overall accuracy. In adaptation scenarios between datasets from the ISPRS semantic labelling benchmark our method outperforms those from recent publications by 10-20% with respect to the mean intersection over union.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

0
13
下载
预览

Unsupervised Domain Adaptive (UDA) person re-identification (ReID) aims at adapting the model trained on a labeled source-domain dataset to a target-domain dataset without any further annotations. Most successful UDA-ReID approaches combine clustering-based pseudo-label prediction with representation learning and perform the two steps in an alternating fashion. However, offline interaction between these two steps may allow noisy pseudo labels to substantially hinder the capability of the model. In this paper, we propose a Group-aware Label Transfer (GLT) algorithm, which enables the online interaction and mutual promotion of pseudo-label prediction and representation learning. Specifically, a label transfer algorithm simultaneously uses pseudo labels to train the data while refining the pseudo labels as an online clustering algorithm. It treats the online label refinery problem as an optimal transport problem, which explores the minimum cost for assigning M samples to N pseudo labels. More importantly, we introduce a group-aware strategy to assign implicit attribute group IDs to samples. The combination of the online label refining algorithm and the group-aware strategy can better correct the noisy pseudo label in an online fashion and narrow down the search space of the target identity. The effectiveness of the proposed GLT is demonstrated by the experimental results (Rank-1 accuracy) for Market1501$\to$DukeMTMC (82.0\%) and DukeMTMC$\to$Market1501 (92.2\%), remarkably closing the gap between unsupervised and supervised performance on person re-identification.

0
3
下载
预览

In this paper, we tackle the unsupervised domain adaptation (UDA) for semantic segmentation, which aims to segment the unlabeled real data using labeled synthetic data. The main problem of UDA for semantic segmentation relies on reducing the domain gap between the real image and synthetic image. To solve this problem, we focused on separating information in an image into content and style. Here, only the content has cues for semantic segmentation, and the style makes the domain gap. Thus, precise separation of content and style in an image leads to effect as supervision of real data even when learning with synthetic data. To make the best of this effect, we propose a zero-style loss. Even though we perfectly extract content for semantic segmentation in the real domain, another main challenge, the class imbalance problem, still exists in UDA for semantic segmentation. We address this problem by transferring the contents of tail classes from synthetic to real domain. Experimental results show that the proposed method achieves the state-of-the-art performance in semantic segmentation on the major two UDA settings.

0
4
下载
预览

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

0
9
下载
预览

We aim at the problem named One-Shot Unsupervised Domain Adaptation. Unlike traditional Unsupervised Domain Adaptation, it assumes that only one unlabeled target sample can be available when learning to adapt. This setting is realistic but more challenging, in which conventional adaptation approaches are prone to failure due to the scarce of unlabeled target data. To this end, we propose a novel Adversarial Style Mining approach, which combines the style transfer module and task-specific module into an adversarial manner. Specifically, the style transfer module iteratively searches for harder stylized images around the one-shot target sample according to the current learning state, leading the task model to explore the potential styles that are difficult to solve in the almost unseen target domain, thus boosting the adaptation performance in a data-scarce scenario. The adversarial learning framework makes the style transfer module and task-specific module benefit each other during the competition. Extensive experiments on both cross-domain classification and segmentation benchmarks verify that ASM achieves state-of-the-art adaptation performance under the challenging one-shot setting.

0
3
下载
预览

Deep learning based object detectors require thousands of diversified bounding box and class annotated examples. Though image object detectors have shown rapid progress in recent years with the release of multiple large-scale static image datasets, object detection on videos still remains an open problem due to scarcity of annotated video frames. Having a robust video object detector is an essential component for video understanding and curating large-scale automated annotations in videos. Domain difference between images and videos makes the transferability of image object detectors to videos sub-optimal. The most common solution is to use weakly supervised annotations where a video frame has to be tagged for presence/absence of object categories. This still takes up manual effort. In this paper we take a step forward by adapting the concept of unsupervised adversarial image-to-image translation to perturb static high quality images to be visually indistinguishable from a set of video frames. We assume the presence of a fully annotated static image dataset and an unannotated video dataset. Object detector is trained on adversarially transformed image dataset using the annotations of the original dataset. Experiments on Youtube-Objects and Youtube-Objects-Subset datasets with two contemporary baseline object detectors reveal that such unsupervised pixel level domain adaptation boosts the generalization performance on video frames compared to direct application of original image object detector. Also, we achieve competitive performance compared to recent baselines of weakly supervised methods. This paper can be seen as an application of image translation for cross domain object detection.

0
3
下载
预览

Deep Convolutional Neural Networks have pushed the state-of-the art for semantic segmentation provided that a large amount of images together with pixel-wise annotations is available. Data collection is expensive and a solution to alleviate it is to use transfer learning. This reduces the amount of annotated data required for the network training but it does not get rid of this heavy processing step. We propose a method of transfer learning without annotations on the target task for datasets with redundant content and distinct pixel distributions. Our method takes advantage of the approximate content alignment of the images between two datasets when the approximation error prevents the reuse of annotation from one dataset to another. Given the annotations for only one dataset, we train a first network in a supervised manner. This network autonomously learns to generate deep data representations relevant to the semantic segmentation. Then the images in the new dataset, we train a new network to generate a deep data representation that matches the one from the first network on the previous dataset. The training consists in a regression between feature maps and does not require any annotations on the new dataset. We show that this method reaches performances similar to a classic transfer learning on the PASCAL VOC dataset with synthetic transformations.

0
10
下载
预览

Recent works showed that Generative Adversarial Networks (GANs) can be successfully applied in unsupervised domain adaptation, where, given a labeled source dataset and an unlabeled target dataset, the goal is to train powerful classifiers for the target samples. In particular, it was shown that a GAN objective function can be used to learn target features indistinguishable from the source ones. In this work, we extend this framework by (i) forcing the learned feature extractor to be domain-invariant, and (ii) training it through data augmentation in the feature space, namely performing feature augmentation. While data augmentation in the image space is a well established technique in deep learning, feature augmentation has not yet received the same level of attention. We accomplish it by means of a feature generator trained by playing the GAN minimax game against source features. Results show that both enforcing domain-invariance and performing feature augmentation lead to superior or comparable performance to state-of-the-art results in several unsupervised domain adaptation benchmarks.

0
3
下载
预览

In this paper, we propose to tackle the problem of reducing discrepancies between multiple domains referred to as multi-source domain adaptation and consider it under the target shift assumption: in all domains we aim to solve a classification problem with the same output classes, but with labels' proportions differing across them. We design a method based on optimal transport, a theory that is gaining momentum to tackle adaptation problems in machine learning due to its efficiency in aligning probability distributions. Our method performs multi-source adaptation and target shift correction simultaneously by learning the class probabilities of the unlabeled target sample and the coupling allowing to align two (or more) probability distributions. Experiments on both synthetic and real-world data related to satellite image segmentation task show the superiority of the proposed method over the state-of-the-art.

0
7
下载
预览

Person re-identification (re-ID) models trained on one domain often fail to generalize well to another. In our attempt, we present a "learning via translation" framework. In the baseline, we translate the labeled images from source to target domain in an unsupervised manner. We then train re-ID models with the translated images by supervised methods. Yet, being an essential part of this framework, unsupervised image-image translation suffers from the information loss of source-domain labels during translation. Our motivation is two-fold. First, for each image, the discriminative cues contained in its ID label should be maintained after translation. Second, given the fact that two domains have entirely different persons, a translated image should be dissimilar to any of the target IDs. To this end, we propose to preserve two types of unsupervised similarities, 1) self-similarity of an image before and after translation, and 2) domain-dissimilarity of a translated source image and a target image. Both constraints are implemented in the similarity preserving generative adversarial network (SPGAN) which consists of a Siamese network and a CycleGAN. Through domain adaptation experiment, we show that images generated by SPGAN are more suitable for domain adaptation and yield consistent and competitive re-ID accuracy on two large-scale datasets.

0
7
下载
预览
小贴士
相关论文
Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation
Jichang Li,Guanbin Li,Yemin Shi,Yizhou Yu
13+阅读 · 4月19日
Kecheng Zheng,Wu Liu,Lingxiao He,Tao Mei,Jiebo Luo,Zheng-Jun Zha
3+阅读 · 3月23日
Suhyeon Lee,Junhyuk Hyun,Hongje Seong,Euntai Kim
4+阅读 · 2020年12月23日
Yadan Luo,Zijian Wang,Zi Huang,Mahsa Baktashmotlagh
9+阅读 · 2020年6月22日
Adversarial Style Mining for One-Shot Unsupervised Domain Adaptation
Yawei Luo,Ping Liu,Tao Guan,Junqing Yu,Yi Yang
3+阅读 · 2020年4月13日
Avisek Lahiri,Charan Reddy,Prabir Kumar Biswas
3+阅读 · 2018年10月4日
Assia Benbihi,Matthieu Geist,Cédric Pradalier
10+阅读 · 2018年5月10日
Riccardo Volpi,Pietro Morerio,Silvio Savarese,Vittorio Murino
3+阅读 · 2018年5月4日
Ievgen Redko,Nicolas Courty,Rémi Flamary,Devis Tuia
7+阅读 · 2018年3月13日
Weijian Deng,Liang Zheng,Guoliang Kang,Yi Yang,Qixiang Ye,Jianbin Jiao
7+阅读 · 2018年1月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
6+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
7+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
20+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
29+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
9+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
11+阅读 · 2018年4月11日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top