The difference-in-differences (DID) design is one of the most popular methods in empirical economics research. However, there is almost no work examining what the DID method identifies in the presence of a misclassified treatment variable. This paper fills this gap by studying the identification of treatment effects in DID designs when the treatment is misclassified. Misclassification arises in various ways, including when the timing of policy intervention is ambiguous or when researchers need to infer treatment from auxiliary data. We show that the DID estimand is biased and recovers a weighted average of the average treatment effects on the treated (ATT) in two subpopulations -- the correctly classified and misclassified units. The DID estimand may yield the wrong sign in some cases and is otherwise attenuated. We provide bounds on the ATT when the researcher has access to information on the extent of misclassification in the data. We demonstrate our theoretical results using simulations and provide two empirical applications to guide researchers in performing sensitivity analysis using our proposed methods.
翻译:差异(DID)设计是经验经济学研究中最受欢迎的方法之一。然而,几乎没有进行任何研究,在出现分类错误的治疗变量时,通过研究在分类错误的治疗设计中确定治疗效果来填补这一空白。在治疗错误时,通过研究在分类错误的情况下对诊断设计中的治疗效果来填补这一空白。分类错误以各种方式出现,包括政策干预的时机不明确,或研究人员需要从辅助数据中推断治疗。我们表明,确证估计有偏差,并恢复了两个子群 -- -- 正确分类和分类错误的单位 -- -- 对治疗(ATT)的平均治疗效果的加权平均值。DAD 估计值在某些情况下可能会产生错误的标志,否则会减弱。当研究人员能够获取数据分类错误程度的信息时,我们提供了关于ATT的界限。我们通过模拟来展示我们的理论结果,并提供两种经验应用来指导研究人员使用我们提议的方法进行敏感性分析。