Land cover maps are a vital input variable to many types of environmental research and management. While they can be produced automatically by machine learning techniques, these techniques require substantial training data to achieve high levels of accuracy, which are not always available. One technique researchers use when labelled training data are scarce is domain adaptation (DA) -- where data from an alternate region, known as the source domain, are used to train a classifier and this model is adapted to map the study region, or target domain. The scenario we address in this paper is known as semi-supervised DA, where some labelled samples are available in the target domain. In this paper we present Sourcerer, a Bayesian-inspired, deep learning-based, semi-supervised DA technique for producing land cover maps from SITS data. The technique takes a convolutional neural network trained on a source domain and then trains further on the available target domain with a novel regularizer applied to the model weights. The regularizer adjusts the degree to which the model is modified to fit the target data, limiting the degree of change when the target data are few in number and increasing it as target data quantity increases. Our experiments on Sentinel-2 time series images compare Sourcerer with two state-of-the-art semi-supervised domain adaptation techniques and four baseline models. We show that on two different source-target domain pairings Sourcerer outperforms all other methods for any quantity of labelled target data available. In fact, the results on the more difficult target domain show that the starting accuracy of Sourcerer (when no labelled target data are available), 74.2%, is greater than the next-best state-of-the-art method trained on 20,000 labelled target instances.


翻译:土地覆盖图是许多类型环境研究和管理的重要输入变量。 虽然这些技术可以通过机器学习技术自动生成, 但这些技术需要大量的培训数据, 才能达到高准确度, 但这些数据并非总能得到。 标签的培训数据稀缺时, 一种技术研究人员使用的是域适应( DA) -- -- 使用来自另一个区域(称为源域)的数据来训练一个分类器, 这个模型用来绘制研究区域或目标域。 我们本文所处理的情景被称为半监督的DA2, 目标域可以提供一些贴标签的样本。 在本文中, 我们展示的是Sharpser, 一种由Bayeser启发的、 深学习基础的、 半监督的DA技术, 用来根据SITS数据制作土地覆盖图。 这个技术需要在一个源域内训练的变动神经网络, 然后在可用的目标域内用一个新的定序器对模型或目标域域进行进一步的培训。 正规化器调整模型的修改程度以适应目标数据, 当目标域内数据数量少时, 限制变化的程度, 目标域内由Bayser 目标域内的目标域的精确度, 、 、 深取的、 基于深学习基础的Dayral- 显示所有目标域内的目标域内的目标域内的数据- 更动的基数, 显示所有现有基准级的基数- 我们的基数- 显示的基底的基数- 显示的基数- 显示的基数- 显示的基数- 基数- 显示的基数- 显示的基数- 显示的基数- 基数- 基数- 显示的基数- 基数- 显示的基数- 显示的基数- 显示的试验- 在两个不同的基数- 显示的基数- 基数- 基数- 显示的基数- 基数- 基数- 基数- 显示- 基数- 基数- 基数- 基数- 基数- 基数- 显示- 基数- 上所有不同的基数- 基数- 显示- 基数- 基数- 基数- 显示的基数- 显示- 不同的试验- 显示- 不同- 基数-

0
下载
关闭预览

相关内容

Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Deep Co-Training for Semi-Supervised Image Segmentation
Arxiv
12+阅读 · 2019年3月14日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员