Quartic eigenvalue problem $(\lambda^4 A + \lambda^3 B + \lambda^2C + \lambda D + E)x = \mathbf{0}$ naturally arises e.g. when solving the Orr-Sommerfeld equation in the analysis of the stability of the {Poiseuille} flow, in theoretical analysis and experimental design of locally resonant phononic plates, modeling a robot with electric motors in the joints, calibration of catadioptric vision system, or e.g. computation of the guided and leaky modes of a planar waveguide. This paper proposes a new numerical method for the full solution (all eigenvalues and all left and right eigenvectors) that is based on quadratification, i.e. reduction of the quartic problem to a spectraly equivalent quadratic eigenvalue problem, and on a careful preprocessing to identify and deflate zero and infinite eigenvalues before the linearized quadratification is forwarded to the QZ algorithm. Numerical examples and backward error analysis confirm that the proposed algorithm is superior to the available methods.
翻译:例如,当在分析{Poiseuille}流的稳定性时,在理论分析和实验设计当地共振声波板时,当解决Or-Sommerfeld方程式时,当理论分析和实验性设计中,当在联合中用电动发动机模拟机器人、校准胃目系统时,或如计算规划波导导导导和漏泄模式时,自然会产生美元(=lambda=2C+\ lambda=D+E)x==\ mathbbf{{{0}美元等值问题,例如当在分析{Poisevieuuille}流时解决Or-Sommerfeld等方程式时,当当将四分解问题降低到等光等量的二次元值板板板板板的理论时,当做机器人模拟机器人在联合中安装电动发动机的模型、对胃目系统进行校准,或例如,当计算出计划波导导导和漏漏模式的计算时,即自然波波波波导导导导导导导导导导和泄漏模式。本文提出了一种新的全面解决方案方法,根据四分分分分算法,以四分算法将确定后,将微变后算算法分析。