The main problem in the area of property testing is to understand which graph properties are \emph{testable}, which means that with constantly many queries to any input graph $G$, a tester can decide with good probability whether $G$ satisfies the property, or is far from satisfying the property. Testable properties are well understood in the dense model and in the bounded degree model, but little is known in sparse graph classes when graphs are allowed to have unbounded degree. This is the setting of the \emph{sparse model}. We prove that for any proper minor-closed class $\mathcal{G}$, any monotone property (i.e., any property that is closed under taking subgraphs) is testable for graphs from $\mathcal{G}$ in the sparse model. This extends a result of Czumaj and Sohler (FOCS'19), who proved it for monotone properties with finitely many obstructions. Our result implies for instance that for any integers $k$ and $t$, $k$-colorability of $K_t$-minor free graphs is testable in the sparse model. Elek recently proved that planarity of bounded degree graphs is almost locally checkable in constant time. We show again that the assumption of bounded degree can be omitted in his result.
翻译:属性测试领域的主要问题是了解哪些图形属性是 \ emph{ 测试}, 这意味着,如果对任何输入图形进行多次查询, 测试者可以非常概率地决定$G$是否满足属性, 或者远不能满足属性。 测试属性在密度模型和约束度模型中是完全理解的, 但是在允许图形不受限制的图形时, 稀薄的图形类别中却鲜为人知。 这是设置 \ emph{ 偏差模型 。 我们证明, 对于任何合适的小封闭类 $\ mathcal{ G} 美元, 任何单体属性( 即在子图下关闭的任何属性) 都可以对稀薄模型中的 $\ macal{ G} 的图形进行测试。 这延伸了Czumaj 和 Sohler (FOCS'19) 的结果, 后者证明单体属性, 存在有限的阻力。 我们的结果表明, 对于任何小类 $k$ 和 $t$@ g$_ g} 任何单类, 在子下关闭的属性, 几乎可以被关闭的直观的图像中, 我们的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面检查, 将再次显示的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平面的平色度将再次显示。