This paper presents a novel approach for controlling humanoid robots pushing heavy objects using kinodynamics-based pose optimization and loco-manipulation MPC. The proposed pose optimization plans the optimal pushing pose for the robot while accounting for the unified object-robot dynamics model in steady state, robot kinematic constraints, and object parameters. The approach is combined with loco-manipulation MPC to track the optimal pose. Coordinating pushing reaction forces and ground reaction forces, the MPC allows accurate tracking in manipulation while maintaining stable locomotion. In numerical validation, the framework enables the humanoid robot to effectively push objects with a variety of parameter setups. The pose optimization generates different pushing poses for each setup and can be efficiently solved as a nonlinear programming (NLP) problem, averaging 250 ms. The proposed control scheme enables the humanoid robot to push object with a mass of up to 20 kg (118$\%$ of the robot's mass). Additionally, the MPC can recover the system when a 120 N force disturbance is applied to the object.


翻译:本文介绍了一种新颖的方法,用以控制使用基于运动动力学的表面优化和液态操纵 MPC 来推推重物体的人类机器人。 拟议的最优化计划为机器人提供最佳推力, 同时在稳定状态、 机器人运动约束和物体参数中核算统一的天体- 机器人动态模型。 这种方法与遥控操纵的 MPC 组合在一起, 以跟踪最佳姿势。 协调推力反应力和地面反应力, MPC 允许在保持稳定的移动状态的同时对操纵进行准确跟踪。 在数字验证中, 框架使人体机器人能够以各种参数设置有效推动物体。 形状优化为每个设置生成不同的推力阵列, 并可以有效地作为非线性程序化问题解决, 平均为250米。 拟议的控制方案使人类机器人能够以最多20公斤( 机器人质量 118 $ <unk> $ ) 来推动物体。 此外, 当对物体应用120 N 力扰动时, MPC 可以恢复系统 。</s>

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
16篇论文入门manipulation研究
机器人学家
15+阅读 · 2017年6月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员