Gathering real-world data from the robot quickly becomes a bottleneck when constructing a robot learning system for grasping. In this work, we design a semi-supervised grasping system that, on top of a small sample of robot experience, takes advantage of images of products to be picked, which are collected without any interactions with the robot. We validate our findings both in the simulation and in the real world. In the regime of a small number of robot training samples, taking advantage of the unlabeled data allows us to achieve performance at the level of 10-fold bigger dataset size used by the baseline. The code and datasets used in the paper will be released at https://github.com/nomagiclab/grasping-student.
翻译:从机器人那里收集真实世界数据很快成为在建造机器人学习系统以掌握数据时的瓶颈。 在这项工作中,我们设计了一个半监督的掌握系统,在对机器人经验的少量抽样的基础上,利用将要采集的产品图像,这些产品是在没有与机器人发生任何互动的情况下收集的。我们在模拟和现实世界中验证了我们的调查结果。在少数机器人培训样本的制度中,利用未贴标签的数据,使我们能够达到基准使用的10倍大数据集的性能水平。本文中使用的代码和数据集将在https://github.com/nomagiclab/grasping-student上发布。</s>