We study from the proof complexity perspective the (informal) proof search problem: Is there an optimal way to search for propositional proofs? We note that for any fixed proof system there exists a time-optimal proof search algorithm. Using classical proof complexity results about reflection principles we prove that a time-optimal proof search algorithm exists without restricting proof systems iff a p-optimal proof system exists. To characterize precisely the time proof search algorithms need for individual formulas we introduce a new proof complexity measure based on algorithmic information concepts. In particular, to a proof system $P$ we attach {\bf information-efficiency function} $i_P(\tau)$ assigning to a tautology a natural number, and we show that: - $i_P(\tau)$ characterizes time any $P$-proof search algorithm has to use on $\tau$ and that for a fixed $P$ there is such an information-optimal algorithm, - a proof system is information-efficiency optimal iff it is p-optimal, - for non-automatizable systems $P$ there are formulas $\tau$ with short proofs but having large information measure $i_P(\tau)$. We isolate and motivate the problem to establish unconditional super-logarithmic lower bounds for $i_P(\tau)$ where no super-polynomial size lower bounds are known. We also point out connections of the new measure with some topics in proof complexity other than proof search.


翻译:我们从证据复杂度的角度研究(非正式)证据搜索问题:是否有最佳方法来寻找证据?我们注意到,对于任何固定的证明系统来说,存在一个时间最优的证明搜索算法。使用关于反省原则的典型证明复杂度结果,我们证明存在一个时间最优的证明搜索算法,而如果存在一个p-最优的证明系统,则没有限制证据系统。要精确地描述单个公式所需要的时间证明搜索算法,我们根据算法信息概念引入一个新的证据复杂度衡量法。特别是,对于任何固定的证明系统来说,我们附加了$-bf信息效率函数 $i_P(tau) 存在一个时间最优的证明系统 $- P(tau) 设置了一个时间最优的搜索算法 。对于非自动分析的系统来说, $_P$(tol_tau) 的连接值是一个时间最优的检索系统, 而对于非自动的系统来说, 也有一个不甚精确度大小。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
0+阅读 · 2021年6月16日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
暗通沟渠:Multi-lingual Attention
我爱读PAMI
7+阅读 · 2018年2月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员