We study from the proof complexity perspective the (informal) proof search problem: Is there an optimal way to search for propositional proofs? We note that for any fixed proof system there exists a time-optimal proof search algorithm. Using classical proof complexity results about reflection principles we prove that a time-optimal proof search algorithm exists without restricting proof systems iff a p-optimal proof system exists. To characterize precisely the time proof search algorithms need for individual formulas we introduce a new proof complexity measure based on algorithmic information concepts. In particular, to a proof system $P$ we attach {\bf information-efficiency function} $i_P(\tau)$ assigning to a tautology a natural number, and we show that: - $i_P(\tau)$ characterizes time any $P$-proof search algorithm has to use on $\tau$ and that for a fixed $P$ there is such an information-optimal algorithm, - a proof system is information-efficiency optimal iff it is p-optimal, - for non-automatizable systems $P$ there are formulas $\tau$ with short proofs but having large information measure $i_P(\tau)$. We isolate and motivate the problem to establish unconditional super-logarithmic lower bounds for $i_P(\tau)$ where no super-polynomial size lower bounds are known. We also point out connections of the new measure with some topics in proof complexity other than proof search.
翻译:我们从证据复杂度的角度研究(非正式)证据搜索问题:是否有最佳方法来寻找证据?我们注意到,对于任何固定的证明系统来说,存在一个时间最优的证明搜索算法。使用关于反省原则的典型证明复杂度结果,我们证明存在一个时间最优的证明搜索算法,而如果存在一个p-最优的证明系统,则没有限制证据系统。要精确地描述单个公式所需要的时间证明搜索算法,我们根据算法信息概念引入一个新的证据复杂度衡量法。特别是,对于任何固定的证明系统来说,我们附加了$-bf信息效率函数 $i_P(tau) 存在一个时间最优的证明系统 $- P(tau) 设置了一个时间最优的搜索算法 。对于非自动分析的系统来说, $_P$(tol_tau) 的连接值是一个时间最优的检索系统, 而对于非自动的系统来说, 也有一个不甚精确度大小。