We consider the notions of (i) critical points, (ii) second-order points, (iii) local minima, and (iv) strict local minima for multivariate polynomials. For each type of point, and as a function of the degree of the polynomial, we study the complexity of deciding (1) if a given point is of that type, and (2) if a polynomial has a point of that type. Our results characterize the complexity of these two questions for all degrees left open by prior literature. Our main contributions reveal that many of these questions turn out to be tractable for cubic polynomials. In particular, we present an efficiently-checkable necessary and sufficient condition for local minimality of a point for a cubic polynomial. We also show that a local minimum of a cubic polynomial can be efficiently found by solving semidefinite programs of size linear in the number of variables. By contrast, we show that it is strongly NP-hard to decide if a cubic polynomial has a critical point. We also prove that the set of second-order points of any cubic polynomial is a spectrahedron, and conversely that any spectrahedron is the projection of the set of second-order points of a cubic polynomial. In our final section, we briefly present a potential application of finding local minima of cubic polynomials to the design of a third-order Newton method.


翻译:我们考虑了以下概念:(一) 临界点,(二) 第二阶点,(三) 本地迷你,(四) 多变量多元分子的严格本地迷你。对于每种类型的点,作为多式多元分子程度的函数,我们研究决定(1) 是否给定点是这种类型的,以及(2) 如果一个多元分子有这种类型的点,我们的研究复杂性。我们的结果体现了这两个问题的复杂性,而这两个问题在以往文献中所保留的所有度都是开放的。我们的主要贡献表明,其中许多问题对于立方多元分子来说是可追溯的。特别是,我们为每个不同类型的多式多元分子的局部点的本地最小性提供了一个高效、必要和充分的条件。我们还表明,通过解决变量数中大小线的半定型程序,可以有效地找到一个本地多元分子的最小值。相比之下,我们非常难以确定一个立方复合分子的立点的第三阶点是否具有临界点。我们还证明,任何复合复合分子的立点的第二阶点是目前对立方谱的立方对立方谱的立方对立方的组合。

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2021年7月31日
专知会员服务
77+阅读 · 2021年3月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度学习面试100题(第6-10题)
七月在线实验室
7+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月17日
Arxiv
0+阅读 · 2021年8月14日
Arxiv
0+阅读 · 2021年8月13日
VIP会员
相关VIP内容
专知会员服务
82+阅读 · 2021年7月31日
专知会员服务
77+阅读 · 2021年3月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
深度学习面试100题(第6-10题)
七月在线实验室
7+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
相关论文
Top
微信扫码咨询专知VIP会员