We present a framework for learning hierarchical policies from demonstrations, using sparse natural language annotations to guide the discovery of reusable skills for autonomous decision-making. We formulate a generative model of action sequences in which goals generate sequences of high-level subtask descriptions, and these descriptions generate sequences of low-level actions. We describe how to train this model using primarily unannotated demonstrations by parsing demonstrations into sequences of named high-level subtasks, using only a small number of seed annotations to ground language in action. In trained models, natural language commands index a combinatorial library of skills; agents can use these skills to plan by generating high-level instruction sequences tailored to novel goals. We evaluate this approach in the ALFRED household simulation environment, providing natural language annotations for only 10% of demonstrations. It achieves task completion rates comparable to state-of-the-art models (outperforming several recent methods with access to ground-truth plans during training and evaluation) while providing structured and human-readable high-level plans.
翻译:我们提出了一个从示威中学习等级政策的框架,使用稀少的自然语言说明来指导为自主决策而发现可重复使用的技能。我们制定了一个行动序列的基因模型,其中目标产生高层次子任务描述序列,这些描述产生低层次行动的序列。我们描述了如何将示范主要用无注释的示范方法培训这种模式,将示范方法分为有名的高级别子任务序列,仅使用少量的种子说明作为实地行动的语言。在经过培训的模型中,自然语言指令将一个技能组合图书馆索引起来;代理人可以使用这些技能进行规划,生成适合新目标的高层次教学序列。我们在亚非拉德家庭模拟环境中评估这一方法,仅为10%的示威提供自然语言说明。它实现的任务完成率与最先进的模型(在培训和评估期间运用最近的一些方法,可以了解地面真相计划)相似,同时提供结构化和人文化的高层次计划。