In this paper, we present a critical overview of statistical fiber bundles models. We discuss relevant aspects, like assumptions and consequences stemming from models in the literature and propose new ones. This is accomplished by concentrating on both the physical and statistical aspects of a specific load-sharing example, the breakdown (BD) for circuits of capacitors and related dielectrics. For series and parallel/series circuits (series/parallel reliability systems) of ordinary capacitors, the load-sharing rules are derived from the electrical laws. This with the BD formalism is then used to obtain the BD distribution of the circuit. The BD distribution and Gibbs measure are given for a series circuit and the size effects are illustrated for simulations of series and parallel/series circuits. This is related to the finite weakest link adjustments for the BD distribution that arise in large series/parallel reliability load-sharing systems, such as dielectric BD, from their extreme value approximations. An elementary but in-depth discussion of the physical aspects of SiO$_2$ and HfO$_2$ dielectrics and cell models is given. This is used to study a load-sharing cell model for the BD of HfO$_2$ dielectrics and the BD formalism. The latter study is based on an analysis of Kim and Lee (2004)'s data for such dielectrics. Here, several BD distributions are compared in the analysis and proportional hazard regression models are used to study the BD formalism. In addition, some areas of open research are discussed.


翻译:在本文中,我们对统计纤维捆绑模型进行批判性概述,我们讨论相关方面,如文献中模型产生的假设和后果,并提出新的假设和后果。这通过集中研究一个具体的载荷共享实例 -- -- 电容器和相关电极电路断流(BD)的物理和统计方面;对于普通电容器的系列和平行/系列电路(系列/平行可靠性系统),负载共享规则来自电法。然后,与BD正态讨论,以获得电路的BD分布。BD分布和Gibs测量尺度用于一系列电路和平行/系列电路的模拟和统计方面。这与大型电容器/离子可靠性共享系统(例如电磁电容器/平行可靠性系统)产生的BD的有限最薄弱的连接调整有关。对于SiO$2和HfO$的额外电路和细胞模型的讨论。 用于对BLE2号的正式数据共享模型和BLE2的对比性分析,用于对BLE的模型和B的模型进行一项研究。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员