This paper introduces a new efficient autoprecoder (AP) based deep learning approach for massive multiple-input multiple-output (mMIMO) downlink systems in which the base station is equipped with a large number of antennas with energy-efficient power amplifiers (PAs) and serves multiple user terminals. We present AP-mMIMO, a new method that jointly eliminates the multiuser interference and compensates the severe nonlinear (NL) PA distortions. Unlike previous works, AP-mMIMO has a low computational complexity, making it suitable for a global energy-efficient system. Specifically, we aim to design the PA-aware precoder and the receive decoder by leveraging the concept of autoprecoder, whereas the end-to-end massive multiuser (MU)-MIMO downlink is designed using a deep neural network (NN). Most importantly, the proposed AP-mMIMO is suited for the varying block fading channel scenario. To deal with such scenarios, we consider a two-stage precoding scheme: 1) a NN-precoder is used to address the PA non-linearities and 2) a linear precoder is used to suppress the multiuser interference. The NN-precoder and the receive decoder are trained off-line and when the channel varies, only the linear precoder changes on-line. This latter is designed by using the widely used zero-forcing precoding scheme or its lowcomplexity version based on matrix polynomials. Numerical simulations show that the proposed AP-mMIMO approach achieves competitive performance with a significantly lower complexity compared to existing literature. Index Terms-multiuser (MU) precoding, massive multipleinput multiple-output (MIMO), energy-efficiency, hardware impairment, power amplifier (PA) nonlinearities, autoprecoder, deep learning, neural network (NN)
翻译:本文引入了一种新的高效自动读数器(AP) 的深层学习方法, 用于大规模多输出多输出多输出( MIMO) 下链路系统, 基站在其中配备了大量配有节能电放大器( PA) 的天线, 并为多个用户终端服务。 我们展示了 AP- MOIMO, 这是一种可以联合消除多用户干扰并补偿严重非线性( NL) PA 扭曲的新方法。 与以往的工程不同, AP- MIMO 的计算复杂度较低, 适合全球节能系统。 具体地说, 我们的目标是设计一个多输出型多输出型( mIMIMO) 的预变数( mIMO), 设计型多输出型( IMO) 预变数型( 运行前), 仅用NDO- 数字型( IMO) 预变数型( 运行前), 仅用NNDO- 代码( 运行前) 模拟( 运行前) 模拟( 运行前) 模拟( 运行前) 模拟) 模拟( 运行前) 运行前( 运行前), 运行前( 运行前) 运行前) 仅用NDODODODVDVDVDVDVD), 运行前( 运行前), 运行前( 运行前),, 运行前( 运行前( 运行前) 运行前) 运行前( 运行前) 运行前(, 运行前) 运行前( 运行前) 运行前) 运行前( 运行前) 运行前( 运行前) 运行前) 运行前( 运行前) 运行前) 运行前) 。。。