Sentence Embedding stands as a fundamental task within the realm of Natural Language Processing, finding extensive application in search engines, expert systems, and question-and-answer platforms. With the continuous evolution of large language models such as LLaMA and Mistral, research on sentence embedding has recently achieved notable breakthroughs. However, these advancements mainly pertain to fine-tuning scenarios, leaving explorations into computationally efficient direct inference methods for sentence representation in a nascent stage. This paper endeavors to bridge this research gap. Through comprehensive experimentation, we challenge the widely held belief in the necessity of an Explicit One-word Limitation for deriving sentence embeddings from Pre-trained Language Models (PLMs). We demonstrate that this approach, while beneficial for generative models under direct inference scenario, is not imperative for discriminative models or the fine-tuning of generative PLMs. This discovery sheds new light on the design of manual templates in future studies. Building upon this insight, we propose two innovative prompt engineering techniques capable of further enhancing the expressive power of PLMs' raw embeddings: Pretended Chain of Thought and Knowledge Enhancement. We confirm their effectiveness across various PLM types and provide a detailed exploration of the underlying factors contributing to their success.
翻译:暂无翻译