There is a one-to-one correspondence between L\'{e}vy copulas and proper copulas. The correspondence relies on a relationship between L\'{e}vy copulas sitting on $[0,+\infty]^d$ and max-id distributions. The max-id distributions are defined with respect to a partial order that is compatible with the inclusion of sets bounded away from the origin. An important consequence of the result is the possibility to define parametric L\'{e}vy copulas as mirror images of proper parametric copulas. For example, proper Archimedean copulas are generated by functions that are Williamson $d-$transforms of the cdf of the radial component of random vectors with exchangeable distributions $F_{R}$. In contrast, the generators of Archimedean L\'{e}vy copulas are Williamson $d-$transforms of $-\log(1-F_{R})$.
翻译:L\ { { { { { { { { { { { { { { { { } 和 最大值分布 。 最大值分布在 L\ { { { { { { { { { { } 和 最大值分布 之间的一对一对应 。 最大值分布于一个部分顺序, 与从源代码中结合。 结果的一个重要后果是, 将参数 L\ { { { { { { { { { { { { ⁇ { { { { } 确定为适当准值的镜像图像。 例如, 适当的阿西米德 { { { { { { } 。 例如, 由随机矢量矢量的弧射部件的 千米- $d- = $ 。 等值 。 。 。 。 。