We propose a novel approach to numerically approximate McKean-Vlasov stochastic differential equations (MV-SDE) using stochastic gradient descent (SGD) while avoiding the use of interacting particle systems. The technique of SGD is deployed to solve a Euclidean minimization problem, which is obtained by first representing the MV-SDE as a minimization problem over the set of continuous functions of time, and then by approximating the domain with a finite-dimensional subspace. Convergence is established by proving certain intermediate stability and moment estimates of the relevant stochastic processes (including the tangent ones). Numerical experiments illustrate the competitive performance of our SGD based method compared to the IPS benchmarks. This work offers a theoretical foundation for using the SGD method in the context of numerical approximation of MV-SDEs, and provides analytical tools to study its stability and convergence.
翻译:暂无翻译