A method is introduced for approximate marginal likelihood inference via adaptive Gaussian quadrature in mixed models with a single grouping factor. The core technical contribution is an algorithm for computing the exact gradient of the approximate log marginal likelihood. This leads to efficient maximum likelihood via quasi-Newton optimization that is demonstrated to be faster than existing approaches based on finite-differenced gradients or derivative-free optimization. The method is specialized to Bernoulli mixed models with multivariate, correlated Gaussian random effects; here computations are performed using an inverse log-Cholesky parameterization of the Gaussian density that involves no matrix decomposition during model fitting, while Wald confidence intervals are provided for variance parameters on the original scale. Simulations give evidence of these intervals attaining nominal coverage if enough quadrature points are used, for data comprised of a large number of very small groups exhibiting large between-group heterogeneity. In contrast, the Laplace approximation is shown to give especially poor coverage and high bias for data comprised of a large number of small groups. Adaptive quadrature mitigates this, and the methods in this paper improve the computational feasibility of this more accurate method. All results may be reproduced using code available at \url{https://github.com/awstringer1/aghmm-paper-code}.
翻译:暂无翻译