We propose a geometric approach for the numerical integration of singular initial value problems for (systems of) quasi-linear differential equations. It transforms the original problem into the problem of computing the unstable manifold at a stationary point of an associated vector field and thus into one which can be solved in an efficient and robust manner. Using the shooting method, our approach also works well for boundary value problems. As examples, we treat some (generalised) Lane-Emden equations and the Thomas-Fermi equation.
翻译:我们建议对准线性差分方程(准线性差分方程系统)单项初始价值问题进行数字整合的几何方法,将原始问题转化为在相关矢量字段的固定点计算不稳定元件的问题,从而转化为能够以高效和稳健的方式解决的问题。我们采用射击方法,也很好地解决边界价值问题。例如,我们处理一些(一般化的)道恩登方程和托马斯-费尔米方程。