While much of the causal inference literature has focused on addressing internal validity biases, both internal and external validity are necessary for unbiased estimates in a target population of interest. However, few generalizability approaches exist for estimating causal quantities in a target population when the target population is not well-represented by a randomized study but is reflected when additionally incorporating observational data. To generalize to a target population represented by a union of these data, we propose a class of novel conditional cross-design synthesis estimators that combine randomized and observational data, while addressing their respective biases. The estimators include outcome regression, propensity weighting, and double robust approaches. All use the covariate overlap between the randomized and observational data to remove potential unmeasured confounding bias. We apply these methods to estimate the causal effect of managed care plans on health care spending among Medicaid beneficiaries in New York City.
翻译:虽然大部分因果推断文献都侧重于解决内部有效性偏见问题,但内部和外部有效性对于对受关注对象的公正估计是必要的,然而,在目标人口没有被随机研究充分代表的情况下,在估计目标人口因果数量时,很少存在通用方法,如果目标人口没有被随机研究充分代表,而是在额外纳入观察数据时得到反映。为了向以这些数据结合为代表的目标人口进行概括,我们建议了一组新的附带条件的跨设计综合估计,将随机和观察数据结合起来,同时处理各自的偏差。估计数据包括结果回归、常态权重和双重稳健方法。所有使用随机和观察数据之间的相互重叠来消除潜在的非计量的不协调偏差。我们使用这些方法来估计管理保健计划对纽约市医疗援助受益人保健支出的因果关系。