In Bayesian accelerated life testing, the most used tool for model comparison is the deviance information criterion. An alternative and more formal approach is to use Bayes factors to compare models. However, Bayesian accelerated life testing models with more than one stressor often have mathematically intractable posterior distributions and Markov chain Monte Carlo methods are employed to obtain posterior samples to base inference on. The computation of the marginal likelihood is challenging when working with such complex models. In this paper, methods for approximating the marginal likelihood and the application thereof in the accelerated life testing paradigm are explored for dual-stress models.


翻译:在Bayesian加速寿命测试中,最常用的模型比较工具是偏差信息标准,另一种更正式的替代办法是使用Bayes系数来比较模型,然而,Bayesian加速寿命测试模型有一个以上压力器,往往有数学上难以解决的后继物分布和Markov连锁Monte Carlo方法,以获得后继物样本作为推理依据。在与这些复杂模型合作时,对边际可能性的计算具有挑战性。本文探讨了在加速生命测试模式中接近边际可能性及其在加速生命测试模式中的应用的方法。本文探讨了双重压力模型。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2022年1月19日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员