Multiscale computational modelling is challenging due to the high computational cost of direct numerical simulation by finite elements. To address this issue, concurrent multiscale methods use the solution of cheaper macroscale surrogates as boundary conditions to microscale sliding windows. The microscale problems remain a numerically challenging operation both in terms of implementation and cost. In this work we propose to replace the local microscale solution by an Encoder-Decoder Convolutional Neural Network that will generate fine-scale stress corrections to coarse predictions around unresolved microscale features, without prior parametrisation of local microscale problems. We deploy a Bayesian approach providing credible intervals to evaluate the uncertainty of the predictions, which is then used to investigate the merits of a selective learning framework. We will demonstrate the capability of the approach to predict equivalent stress fields in porous structures using linearised and finite strain elasticity theories.
翻译:多尺度建模具有挑战性,因为用有限元素进行直接数字模拟的计算成本很高。为解决这一问题,同时采用多尺度方法,将更廉价的大型代用器作为微型滑动窗口的边界条件。微观规模问题仍然是在执行和成本两方面都具有数字挑战性的操作。在这项工作中,我们提议用一个Encoder-Decoder进化神经网络来取代当地的微观规模解决方案,这将产生微规模的压力纠正,以纠正围绕尚未解决的微型规模特征的粗糙预测,而不必事先对当地微观规模问题进行平衡。我们采用了一种巴伊西亚方法,提供可靠的间隔时间来评价预测的不确定性,然后用来调查选择性学习框架的优点。我们将展示使用线性和有限弹性弹性弹性弹性理论预测多管结构中类似压力场的方法的能力。