Discrete data are abundant and often arise as counts or rounded data. However, even for linear regression models, conjugate priors and closed-form posteriors are typically unavailable, thereby necessitating approximations or Markov chain Monte Carlo for posterior inference. For a broad class of count and rounded data regression models, we introduce conjugate priors that enable closed-form posterior inference. Key posterior and predictive functionals are computable analytically or via direct Monte Carlo simulation. Crucially, the predictive distributions are discrete to match the support of the data and can be evaluated or simulated jointly across multiple covariate values. These tools are broadly useful for linear regression, nonlinear models via basis expansions, and model and variable selection. Multiple simulation studies demonstrate significant advantages in computing, predictive modeling, and selection relative to existing alternatives.
翻译:然而,即使对于线性回归模型,通常也无法获得共形前置物和封闭式后台元件,因此需要近似值或Markov连锁 Monte Carlo 来进行后推推。对于一大类的计算和四舍五入数据回归模型,我们引入了共形前置物,以便能够进行闭式后演推导。关键后台和预测功能可以分析或通过直接的蒙特卡洛模拟进行可比较分析或预测功能。关键后台和预测性功能是独立的,可以与数据支持相匹配的,并且可以在多个共变数值之间联合评估或模拟。这些工具对于线性回归、通过基础扩展的非线性模型以及模型和变量选择大有用处。多重模拟研究在计算、预测性模型制作和选择与现有替代方法相比具有重大优势。