The information-theoretic secure exact-repair regenerating codes for distributed storage systems (DSSs) with parameters $(n,k=d,d,\ell)$ are studied in this paper. We consider distributed storage systems with $n$ nodes, in which the original data can be recovered from any subset of $k=d$ nodes, and the content of any node can be retrieved from those of any $d$ helper nodes. Moreover, we consider two secrecy constraints, namely, Type-I, where the message remains secure against an eavesdropper with access to the content of any subset of up to $\ell$ nodes, and Type-II, in which the message remains secure against an eavesdropper who can observe the incoming repair data from all possible nodes to a fixed but unknown subset of up to $\ell$ compromised nodes. Two classes of secure determinant codes are proposed for Type-I and Type-II secrecy constraints. Each proposed code can be designed for a range of per-node storage capacity and repair bandwidth for any system parameters. They lead to two achievable secrecy trade-offs, for Type-I and Type-II security.
翻译:本文研究了分布式储存系统(DSS)的信息理论安全准确性再造代码,其参数为(n,k=d,d,ell)美元。我们考虑使用美元节点的分布式存储系统,其中原始数据可以从美元=d节点的任何子集中回收,任何节点的内容都可以从任何美元帮助节点中提取。此外,我们考虑两种保密限制,即:I类,其中信息仍然对能够获取最高美元节点任何子集内容的窃听器和II类,其中信息对能够从所有可能的节点观察收到的修复数据到固定但未知的一小节点,最高为美元=ell美元受损的节点。建议对第一类和二类保密限制采用两种安全性确定性代码。每种拟议代码可以针对每个节点的存储能力和任何系统参数的带宽进行设计,可以导致两种可实现的保密性交易,即类型I安全交易和类型II。