We address the problem of production planning and distribution in multi-echelon supply chains. We consider uncertain demands and lead times which makes the problem stochastic and non-linear. A Markov Decision Process formulation and a Non-linear Programming model are presented. As a sequential decision-making problem, Deep Reinforcement Learning (RL) is a possible solution approach. This type of technique has gained a lot of attention from Artificial Intelligence and Optimization communities in recent years. Considering the good results obtained with Deep RL approaches in different areas there is a growing interest in applying them in problems from the Operations Research field. We have used a Deep RL technique, namely Proximal Policy Optimization (PPO2), to solve the problem considering uncertain, regular and seasonal demands and constant or stochastic lead times. Experiments are carried out in different scenarios to better assess the suitability of the algorithm. An agent based on a linearized model is used as a baseline. Experimental results indicate that PPO2 is a competitive and adequate tool for this type of problem. PPO2 agent is better than baseline in all scenarios with stochastic lead times (7.3-11.2%), regardless of whether demands are seasonal or not. In scenarios with constant lead times, the PPO2 agent is better when uncertain demands are non-seasonal (2.2-4.7%). The results show that the greater the uncertainty of the scenario, the greater the viability of this type of approach.


翻译:我们处理多层次供应链的生产规划和分配问题。我们考虑的是使问题具有随机性和非线性的需求和周转时间不确定的问题。我们介绍了Markov 决策程序制定和非线性规划模式。作为一个顺序决策问题,深强化学习(RL)是一个可能的解决方案。近年来,这种技术在人工智能和优化社区中得到了大量的注意。考虑到在不同地区深RL方法所取得的良好结果,人们越来越有兴趣在操作研究领域的问题中应用这些结果。我们使用了深RL技术,即Proximal政策优化(PPPOO2),以解决考虑到不确定性、定期和季节性需求以及恒定或随机性领先时间的问题。在不同情况下进行了实验,以更好地评估算法的适合性。以线性模型为基础的一种媒介被用作基线。实验结果表明,PPO2是这种类型问题的竞争性和适当工具。PPPO2代理商比所有设想的基线要好,即Proximal政策优化(PPO2),无论季节性要求的不确定性类型是多少。在季节性决定型的假设中,这种不确定性是更难的情景是更准确的。(7.2),无论季节性要求是更准确的时期是更准确的。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
32+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
32+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
5+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员